Figure 1: Schematic of the Idealized Sidewall Aneurysm Model (left) and Camera and Fluoroscopic Shots of the Five Devices Implanted in Silicone Models
نویسندگان
چکیده
Brain aneurysms are abnormal ballooning of intracranial arteries which when left untreated may result in fatal outcome for the patients. Neurovascular stents have been used extensively in stent-assisted coiling treatment of aneurysms. Treatment with flow diverters (low porosity, fine-mesh stents) is used for complicated aneurysm geometries not amenable to coiling. Angiographic analysis with mathematical modeling has been applied for comparison of different flow diversion designs as well as towards prediction of flow diversion efficacy [1]. High resolution computational fluid dynamics (CFD) simulations would provide the opportunity to study localized alterations in hemodynamics due to different devices. Current class of CFD studies with flow diverters in cerebral aneurysm models do not use realistic wire configurations in their models and the fine differences in porosity and pore density across the aneurysm neck might produce inaccurate results. The proposed study aims to test five commercially available neurovascular devices that have not been compared before through angiographic washout analysis and accurate microCT-based mesh reconstruction and CFD analysis in idealized sidewall aneurysm models.
منابع مشابه
Study of parameters for evaluating flow reduction with stents in a sidewall aneurysm phantom model.
The effect of stent design parameters such as porosity, pore density, number of strands, and strut angle to the artery were studied in vitro using particle image velocimetry (PIV). Five mesh stents were implanted into a sidewall aneurysm model. The flow features in a sidewall aneurysm silicone phantom model were investigated at a Reynolds number of 300. It was found that the lowest porosity ste...
متن کاملArtificial cerebral aneurysm model for medical testing, training, and research.
Artificial models of cerebral aneurysms for medical training and testing of medical devices were constructed from corrosion casts of the main cerebral arteries of a human specimen. Three aneurysms with a variety of shapes were simulated at typical locations. Rigid and soft models were made of silicone using the "lost wax" technique. The transparent silicone models were anatomically accurate and...
متن کاملUse of Chitosan Conduit for Bridging Small-Gap Peripheral Nerve Defect in Sciatic Nerve Transection Model of Rat
Objective-To evaluate effect of chitosan conduit for peripheral nerve regeneration using sciatic nerve transection model in rat Design- Experimental in vivo study. Animals- Sixty healthy male Wistar rats. Procedures-The rats were divided into four experimental groups (n=15) randomly. In sham group the left sciatic nerve was exposed through a gluteal muscle incision and after careful...
متن کاملBridging Small-Gap Peripheral Nerve Defect Using Silicone Rubber Chamber in the Rat Sciatic Nerve Transection Model
Despite promising results observed using silicone rubber chamber, no previous comprehensive work was performed on behavior of the conduit. Present study aimed at further functional, histomorphometrical and immunohistochemical assessment of nerve regeneration in the same animal along a 10-mm rat sciatic nerve gap. Fifty- four male Wistar rats were divided into three experimental groups (n = 1...
متن کاملEffect of Local Administration of Brain Derived Neurotrophic Factor with Silicone Conduit on Peripheral Nerve Regeneration: a Rat Sciatic Nerve Transection Model
Objective- The objective was to assess local effect of brain derived neurotrophic factor (BDNF) on functional recovery of peripheral nerve in rat sciatic nerve transection model. Design- Experimental study. Animals- Sixty male healthy white Wistar rats Procedures- The animalswere randomized into four experimental groups of 15 animals each: In sham-operated group (SHAM), sciatic nerve was exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015